Exercise 66

Boyle's Law Boyle's Law says that the volume V of a gas at constant temperature increases whenever the pressure P decreases, so that V and P are inversely proportional. If $P=14.7 \mathrm{lb} / \mathrm{in}^{2}$ when $V=1000 \mathrm{in}^{3}$, then what is V when $P=23.4 \mathrm{lb} / \mathrm{in}^{2}$.

Solution

V and P are inversely proportional:

$$
V \propto \frac{1}{P}
$$

Make this proportionality an equation we can use by introducing a proportionality constant k.

$$
\begin{equation*}
V=\frac{k}{P} \tag{1}
\end{equation*}
$$

Use the fact that $P=14.7 \mathrm{lb} / \mathrm{in}^{2}$ when $V=1000 \mathrm{in}^{3}$ to determine k.

$$
\begin{gathered}
1000=\frac{k}{14.7} \\
1000(14.7)=k \\
k=14,700 \mathrm{lb} \cdot \mathrm{in}
\end{gathered}
$$

Equation (1) then becomes

$$
V=\frac{14,700}{P} .
$$

Therefore, when $P=23.4 \mathrm{lb} / \mathrm{in}^{2}$,

$$
\begin{aligned}
V & =\frac{14,700}{23.4} \\
& =\frac{24,500}{39} \\
& \approx 628.2 \mathrm{in}^{3} .
\end{aligned}
$$

